Thursday, January 22, 2015 8:49 AM

In Mathematical Analysis, after learning convergence of sequence uniqueness of limit

Qu. What next?

Recall The definition of a Canchy sequence Definition A sequence $(x_n)_{n=1}^{\infty}$ in (x,d) is Cauchy if VEDO INEM such that $\forall m, n \ge N \quad d(x_m, x_n) < \varepsilon$

Qu Can it he defined on a topological space? This topic is only for metric space Definition. A metric space (X,d) is complete

if every Canchy sequence converges in X.

Examples

1) R', R' are complete

2 Any [a,b] is complete

(3) p2/[(0,0)] is not complete

Fact Every convergent sequence is Key idea Use D-inequality near the limit Philosophy

Example 3 above: take away a limit from R2 From Q to R: Insert all limits for Cauchy Sequences Ov. Why is Cauchy sequence important?

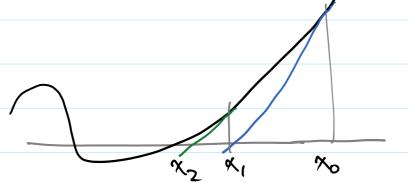
Example Newton's method

To find a solution for f(x)=0

Pick XoER

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

 $x_n \rightarrow a root$



Qu. How do we know (xn) converges?

With reasonable condition on f', we prove (xn) is a Cauchy sequence (contraction)

Philosophy
(auchy sequence (in a complete metric space)
may help us to show something exists!

Qu Let (X,d) be a complete metric space. YCX, using the same metric d Is (Y,d) complete?

Obviously, $\mathbb{R}^2 \setminus \{(0,0)\}$ is an answer

Proposition. Let (Xid) be complete and YCX

(Yid) is complete > Y is closed in X

"E" Let (Yn) be Cauchy in Y

it is Cauchy in X (same metric)

if y \to x \in X (X is complete)

if \times Y (X is complete)

if \times Y (Y is closed)

Let $x \in Y$... $\exists y_n \in Y, y_n \rightarrow x \text{ (metric space)}$... (y_n) is Counchy in X and so in Y... $y_n \rightarrow y \in Y \subset X$ By uniqueness, $x = y \in Y$.

Qu. Think of a theorem in Nathematical Analysis that Cauchy sequence is used in the proof.

Examples.

Nested Interval Theorem

Continuous function on [a,b] has max & min

Note. This one has another proof

Diameter On a metric space (X,d), ACX diam $(A) = \{ d(a_1,a_2) : a_1,a_2 \in A \}$

Cantor Intersection Theorem Let (X,d) be a complete metric space; \$ = Fn C X; * each Fn is closed * Fn+1 C Fn * diam(Fn) -> 0 as n-> 0 Then n=Fn is a singleton Existence, i.e., nonempty Uniqueness On How to start the proof? Obviously, create a Canchy sequence (Xn) By completeness of X, xn - desired point * Pick xn &Fn for each neIN (What else!) \forall d(x_{n+p}, x_n) \leq diam(F_n) $\longrightarrow 0$, ... Cauchy By completeness of X, $x_n \rightarrow some x \in X$ * Why XEFn Vn? x is the limit of (xn, xn+1, xn+2,...) in Fn $\therefore x \in F_n = F_n$ (closed)

* diam(Fn) -> o again => unique.

Contraction Mapping $f:(X,d_X) \rightarrow (X,d_X)$ is a contraction mapping if I constant 0<0<1 such that for all x1, x2 ∈ X $d_{\chi}(f(x_1), f(x_2)) < \alpha d_{\chi}(x_1, x_2)$

Note. Similar to Lipschitz (see later)

Banach Fixed Point Theorem

A contraction mapping on a complete metric Space has a fixed point.

That is, $\exists x_0 \in X$ such that $f(x_0) = x_0$.

Qu. How to construct the fixed point?

No other method, try our luck!

Any x, EX, then $\chi_2 = f(\chi_1)$, ..., $\chi_{n+1} = f(\chi_n)$

Need to show (xn) is a Cauchy Sequence Suppose it is, then by completeness of X, $\chi_n \longrightarrow some \chi_0 \in X$

Then $x_{n+1} = f(x_n)$ why?

 $x_0 = f(x_0)$ Lettic space is Hausdorff

Monday, January 26, 2015

4:49 PM

Why is
$$(x_n)_{n=1}^{\infty}$$
 Cauchy?
 $d(x_{n+p}, x_n) = d(f(x_{n+p-1}), f(x_{n-1}))$
 $< \alpha d(x_{n+p-1}), x_{n-1})$
 \vdots
 $< \alpha^{n-1}d(x_{p+1}, x_1)$
 $does not work depends on $p!$
 $d(x_{n+1}, x_n) = d(f(x_n), f(x_{n-1}))$
 $< \alpha d(x_n, x_{n-1})$
 $< \alpha d(x_n, x_{n-1})$
 $< \alpha d(x_n, x_{n-1})$
 $< \alpha^{n-1}d(x_2, x_1)$ for $n \ge 2$
 $d(x_{n+p}, x_n) \le d(x_{n+p}, x_{n+p-1}) + \cdots + d(x_{n+1}, x_n)$
 $< (\alpha^{n+p-1} \cdots + \alpha^{n-1}) d(x_2, x_1)$
 $< x_n \in (x_n)$
 $< x_n \in (x$$

Monday, January 26, 2015

8:31 PM

Known Before If $f,g=X \longrightarrow Hoursdorff$ are continuous; $A \subset X$ with $\overline{A} = X$ such that $f|_{A} \equiv g|_{A}$, then $f \equiv g$ on XThis is a uniqueness statement, need to known

that f,g are already continuous on X.

Theorem Let (X,d_X) and (Y,d_Y) be metric

spaces and Y be complete. If $\overline{A} = X$ $f:A \longrightarrow Y$ is uniformly continuous

then \exists unique continuous $f:X \longrightarrow Y$ such that $f|_{A} = f$ * Both X,Y have to be metric

* f only initially defined on A, not X

* Need a "stronger continuity (only for metric)

* f is also "stronger" continuous

* Uniqueness comes from previous theorem

Uniform Continuous $f=(X,d_X) \longrightarrow (Y,d_Y)$ is uniformly continuous if $\forall \ E>0$ $\exists \ S>0$ (only depends on E) such that if $d(x_1,x_2) < S$ then $d(f(x_1),f(x_2)) < E$ $\forall \ x \in X$ $f(B_X(x,S)) \subset B_Y(f(x),E)$ Try to define $\hat{f}(x)$ for $x \in X = \overline{A}$ For each $x \in X$, \exists sequence in A,

call it $\alpha_n^x \longrightarrow x$ as $n \to \infty$ If $x \in A$, choose $\alpha_n^x = x \forall n$ Temporarily, $\hat{f}(x)$ depends on the choice $\hat{g}(\alpha_n^x)$ Then $f(\alpha_n^x)$ is a sequence in YHope. It is Cauchy, \vdots call its limit $\hat{f}(x)$ Take any $\xi > 0$, nant to find NEN such that $\forall m, n > N$ $d_y(f(\alpha_n^x), f(\alpha_n^x)) < \xi$

For $\chi \in \overline{A}$ $m, n \Rightarrow \frac{2}{2}$ $\uparrow \frac{5}{2}$ large $a_{m} \leftarrow \frac{1}{2}$ $a_{m} \leftarrow \frac{1}$

Thus, we have $N \in \mathbb{N}$, if $m, n \ge N$ $d_{Y}(f(a_{m}^{x}), f(a_{n}^{x})) < \varepsilon$

The sequence $(f(a_n^x))_{n=1}^{\infty}$ in Y is Cauchy and has a limit, to be defined as f(x). Note that $f|_{A} \equiv f$ by choice of sequence.

If \hat{f} is continuous on X, then by previous result, it is unique, and so indep. of choices $\eta(a_n^X)_{n=1}^{\infty}$

Continuity of f (uniformly)

Want: Y E>O = J J>O such that

if $d_X(x_1,x_2) < \delta$ then $d_Y(\hat{f}(x_1),\hat{f}(x_2)) < \epsilon$

Exercise. Write down the E-5 augument using the idea of the diagram.